Lema de Fatou

Em matemática o lema de Fatou é um importante resultado da teoria da medida. Normalmente é demonstrado partindo do teorema da convergência monótona e é aplicado para demonstrar o teorema da convergência dominada.

O matemático e astrônomo francês Pierre Fatou (1878-1929).

Enunciado

Seja uma seqüência de funções mensuráveis não negativas, então:

Demonstração

Defina e .

formam uma seqüência não-decrescente de funções não-negativas e, portanto, pelo teorema da convergência monótona, temos:

Da definição de , temos ainda:

Tomando o ínfimo em , vale:

Passando ao limite em , segue:

Como, temos o resultado:

Corolário

Seja uma seqüência de funções mensuráveis não negativas convergindo quase-sempre para uma função , tal que:

então:

Ver também

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.