Per Enflo

Per H. Enflo (Estocolmo, 20 de maio de 1944) é um matemático que resolveu fundamentais problemas em análise funcional. Três desses problemas tinham sido problema aberto por mais de quarenta anos.[1]

Per Enflo
Per Enflo
Nascimento 20 de maio de 1944 (79 anos)
Estocolmo
Residência Kent
Cidadania Estados Unidos, Suécia
Alma mater Universidade de Estocolmo
Ocupação matemático, pianista, professor universitário
Empregador(a) Instituto Real de Tecnologia, Universidade de Kent
Orientador(a)(es/s) Hans Rådström
Orientado(a)(s) Angela Spalsbury
Instituições Universidade da Califórnia em Berkeley, Universidade Stanford, Escola Politécnica, Paris, Instituto Real de Tecnologia, Universidade de Kent
Campo(s) matemática
Instrumento piano

Na resolução destes problemas, Enflo desenvolveu novas técnicas que foram depois utilizadas por outros pesquisadores em análise funcional e teoria de operadores há anos. Algumas das pesquisas de Enflo tem sido importante também em outros campos de matemática, como a teoria dos números, e ciência da computação, principalmente álgebra computacional e algoritmo de aproximação.

Enflo trabalha no Kent State University, onde detém o título de Professor Universitário. Enflo já declarou posições na Universidade da Califórnia, Berkeley, Universidade de Stanford, École Polytechnique (Paris) e o Royal Institute of Technology, Estocolmo.

Enflo é também um pianista.

Enflo escreveu sua tese de doutorado sobre o Quinto Problema de David Hilbert.

Notas

  1. Página 586 Halmos em 1990

Bibliografia

  • Enflo, Per. (1970) Investigations on Hilbert’s fifth problem for non locally compact groups (Stockholm University). Enflo's thesis contains reprints of exactly five papers:
    • Enflo, Per; 1969a: Topological groups in which multiplication on one side is differentiable or linear. Math. Scand., 24, s. 195-197.
    • Per Enflo (1969). «On the nonexistence of uniform homeomorphisms between Lp spaces». Ark. Mat. 8: 103–5. doi:10.1007/BF02589549
    • Enflo, Per; 1969b: On a problem of Smirnov. Ark. Math., 8, s. 107-109.
    • Enflo, Per; 1970a: Uniform structures and square roots in topological groups I. Israel J. Math. 8, pages 230-252.
    • Enflo, Per; 1970b: Uniform structures and square roots in topological groups II. Israel J. Math. 8, pages 253—272.
      • Enflo, Per. 1976. Uniform homeomorphisms between Banach spaces. Séminaire Maurey-Schwartz (1975—1976), Espaces, , applications radonifiantes et géométrie des espaces de Banach, Exp. No. 18, 7 pp. Centre Math., École Polytech., Palaiseau. MR0477709 (57 #17222) [Highlights of papers on Hilbert's fifth problem and on independent results of Martin Ribe, another student of Hans Rådström]
  • Enflo, Per (1972). «Banach spaces which can be given an equivalent uniformly convex norm». Israel Journal of Mathematics. 13: 281–288. doi:10.1007/BF02762802 Recorde militar
  • Beauzamy, Bernard; Bombieri, Enrico; Enflo, Per; Montgomery, Hugh L. (1990). «Products of polynomials in many variables». Journal of Number Theory. 36 (2): 219–245. doi:10.1016/0022-314X(90)90075-3 Recorde militar
  • Beauzamy, Bernard; Enflo, Per; Wang, Paul (19 de outubro de 1994). «Quantitative Estimates for Polynomials in One or Several Variables: From Analysis and Number Theory to Symbolic and Massively Parallel Computation». Mathematics Magazine. 67 (4): 243–257 (accessible to readers with undergraduate mathematics)
  • P. Enflo, John D. Hawks, M. Wolpoff. "A simple reason why Neanderthal ancestry can be consistent with current DNA information". American Journal Physical Anthropology, 2001
  • Enflo, Per; Lomonosov, Victor (2001). «Some aspects of the invariant subspace problem». Handbook of the geometry of Banach spaces. I. Amsterdam: North-Holland. pp. 533–559
  • Bartle, R. G. (1977). «MR0402468 (53 #6288) (Review of Per Enflo's "A counterexample to the approximation problem in Banach spaces" Acta Mathematica 130 (1973), 309--317)». Mathematical Reviews Recorde militar
  • Beauzamy, Bernard (1985). Introduction to Banach Spaces and their Geometry Second revised ed. [S.l.]: North-Holland. ISBN 0444864164. MR 889253
  • Beauzamy, Bernard (1988). Introduction to Operator Theory and Invariant Subspaces. [S.l.]: North Holland. ISBN 044470521X. MR 967989
  • Enrico Bombieri and Walter Gubler (2006). Heights in Diophantine Geometry. [S.l.]: Cambridge U. P. ISBN 0521846153
  • Roger B. Eggleton (1984). «MR0666400 (84m:00015) (Review of Mauldin's The Scottish Book: Mathematics from the Scottish Café». Mathematical Reviews. MR 666400
  • Grothendieck, A.: Produits tensoriels topologiques et espaces nucleaires. Memo. Amer. Math. Soc. 16 (1955).
  • Halmos, Paul R. (1978). «Schauder bases». American Mathematical Monthly. 85 (4): 256–257. JSTOR 2321165. MR 488901. doi:10.2307/2321165
  • Paul R. Halmos, "Has progress in mathematics slowed down?" Amer. Math. Monthly 97 (1990), no. 7, 561—588. Recorde militar
  • William B. Johnson "Complementably universal separable Banach spaces" in Robert G. Bartle (ed.), 1980 Studies in functional analysis, Mathematical Association of America.
  • Kałuża, Roman (1996). Ann Kostant and Wojbor Woyczyński, ed. Through a Reporter's Eyes: The Life of Stefan Banach. [S.l.]: Birkhäuser. ISBN 0817637729. MR 1392949
  • Knuth, Donald E (1997). «4.6.2 Factorization of Polynomials». Seminumerical Algorithms. Col: The Art of Computer Programming. 2 Third ed. Reading, Massachusetts: Addison-Wesley. pp. 439–461, 678–691. ISBN 0-201-89684-2
  • Kwapień, S. "On Enflo's example of a Banach space without the approximation property". Séminaire Goulaouic-Schwartz 1972—1973: Équations aux dérivées partielles et analyse fonctionnelle, Exp. No. 8, 9 pp. Centre de Math., École Polytech., Paris, 1973. Recorde militar
  • Lindenstrauss, Joram and Benyamini, Yoav. Geometric nonlinear functional analysis Colloquium publications, 48. American Mathematical Society.
  • Lindenstrauss, J.; Tzafriri, L.: Classical Banach Spaces I, Sequence spaces, 1977. Springer-Verlag.
  • Jiří Matoušek. Lectures on Discrete Geometry. Springer-Verlag, Graduate Texts in Mathematics, 2002, ISBN 9780387953731.
  • R. Daniel Mauldin, ed. (1981). The Scottish Book: Mathematics from the Scottish Café (Including selected papers presented at the Scottish Book Conference held at North Texas State University, Denton, Tex., May 1979). Boston, Mass.: Birkhäuser. pp. xiii+268 pp. (2 plates). ISBN 3-7643-3045-7. MR 666400
  • Nedevski, P.; Trojanski, S. «P. Enflo solved in the negative Banach's problem on the existence of a basis for every separable Banach space». Fiz.-Mat. Spis. Bulgar. Akad. Nauk. 16 (49) (1973), 134--138. MR 458132
  • Pietsch, Albrecht (2007). History of Banach spaces and linear operators. Boston, MA: Birkhäuser Boston, Inc. pp. xxiv+855 pp. ISBN 978-0-8176-4367-6. MR 2300779
  • Pisier, Gilles (1975). «Martingales with values in uniformly convex spaces». Israel J. Math. 20 (3-4): 326–350. MR 394135. doi:10.1007/BF02760337
  • Heydar Radjavi and Peter Rosenthal (Março de 1982). «The invariant subspace problem». The Mathematical Intelligencer. 4 (1): 33–37. doi:10.1007/BF03022994
  • Karen Saxe, Beginning Functional Analysis, Undergraduate Texts in Mathematics, 2002 Springer-Verlag, New York. (Pages 122-123 sketch a biography of Per Enflo.)
  • Schmidt, Wolfgang M. (1980 [1996 with minor corrections]) Diophantine approximation. Lecture Notes in Mathematics 785. Springer.
  • Singer, Ivan. Bases in Banach spaces. II. Editura Academiei Republicii Socialiste România, Bucharest; Springer-Verlag, Berlin-New York, 1981. viii+880 pp. ISBN 3-540-10394-5. Recorde militar
  • Yadav, B. S. (2005). «The present state and heritages of the invariant subspace problem». Milan Journal of Mathematics. 73: 289–316. ISSN 1424-9286. doi:10.1007/s00032-005-0048-7. MR2175046

Ligações externas

Bases de dados

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.