Sentença (lógica matemática)

Em lógica matemática, uma sentença de uma lógica de predicados é uma fórmula bem formada com valor booleano e sem variáveis livres. Uma sentença pode ser vista como expressão de uma proposição, algo que possa ser falso ou então verdadeiro. A restrição de não possuir variáveis livres é necessária para assegurar que sentenças possam ter valores verdade concretos e fixos: Como as variáveis livres de uma fórmula (geral) podem assumir diversos valores, o valor verdade de tal fórmula pode variar.

 Nota: Para outros significados, veja sentença (desambiguação).

Sentenças sem quaisquer conectivos lógicos ou quantificadores são conhecidas como sentenças atômicas; por analogia a fórmula atômica. Sentenças são, então, construídas a partir de sentenças atômicas por meio da aplicação de conectivos e quantificadores.

Um conjunto de sentenças é chamado de teoria; assim, sentenças individuais podem ser chamadas teoremas. Para avaliar corretamente a verdade (ou falsidade) de uma sentença, é preciso fazer referência a uma interpretação da teoria. Para teorias de primeira-ordem, interpretações são comumente chamadas estruturas. Dada uma estrutura ou interpretação, uma sentença tem um valor verdade fixo. Uma teoria é satisfatível quando todas suas sentenças são verdade.

Exemplo

O exemplo a seguir está em lógica de primeira ordem.

é uma sentença. Essa sentença é verdadeira nos números reais positivos ℝ+, falsa nos números reais ℝ, e verdadeira nos números complexos ℂ. (Em português, essa sentença é interpretada para dizer que todo o número da estrutura é o quadrado de um membro daquela estrutura particular). Por outro lado, a fórmula:

não é uma sentença, por causa da presença da variável livre y. Na estrutura dos números reais, essa fórmula é verdadeira se substituirmos (arbitrariamente) y = 2, mas falsa se y = -2. (O que importa é a presença de uma variável livre, em vez do valor da variável da verdade, por exemplo, mesmo na estrutura dos números complexos, onde a declaração é sempre verdade, ainda não é considerado uma sentença). Em vez disso, em vez de fórmula pode ser referido como predicado.

Ver também

Referências

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.