Teorema de Clairaut-Schwarz

Na análise matemática, o teorema de Clairaut-Schwarz é uma condição suficiente para a igualdade das derivadas parciais cruzadas de uma função de várias variáveis. O teorema estabelece que, se as derivadas parciais cruzadas existem e são contínuas, então são iguais. O nome do teorema é uma referência aos não-contemporâneos Alexis Claude de Clairaut e Hermann Amandus Schwarz.

Enunciado

Enunciado geral

Seja um conjunto aberto e um campo escalar de classe . Então, para qualquer ponto :

Caso particular a duas variáveis

Seja um conjunto aberto e um campo escalar de classe . Então, para qualquer ponto :

Exemplos de aplicações

Aplicando o teorema no operador del de alta ordem se obtêm que:

Segundo Stewart, 2007, o teorema de Clairaut-Schwarz é válido se ambas derivadas parciais mistas forem contínuas em seus domínios.[1]

Seu análogo em integrais duplas/iteradas é o Teorema de Fubini.

Referências

  1. Stewart, James, Cálculo Vol. 2,5ª ed, 2007, pp.914 .
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.