Teorema de Erdős–Wintner

O Teorema de Erdős–Wintner é um teorema da Teoria Probabilística dos Números assim nomeado por ter sido provado por Paul Erdős e Aurel Wintner[1].

Teoria

Sejam x e y tais que    A notação

          

é a frequencia entre os inteiros n no intervalo semi-aberto daqueles para os quais a função aditiva real não exceda z.

Seja e uma sequência crescente de inteiros positivos para os quais .

Seja uma outra sequência de números inteiros, , ,   já que .

Na ordem que as frequências

          

convergem fracamente, como , é necessário e suficiente que as três séries

          

convirjam.

Resultados

Quando e , este é o Teorema de Erdős–Wintner. Para e algum que satisfaça , em conjunto com a condição acima foi provada por A. J. Hildebrand.

Referências

  1. A localized Erdős-Wintner Theorem - Página acessada em 30 de abril de 2014. (em inglês)
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.