Análise complexa

A análise complexa, também conhecida como a teoria das funções de variável complexa, é o ramo da matemática que investiga as funções de números complexos. Ela é útil em muitas áreas da matemática, incluindo geometria algébrica, teoria dos números, análise combinatória e matemática aplicada; além disso, ela é amplamente utilizada em vários ramos da física, como hidrodinâmica, termodinâmica e, em particular, mecânica quântica. Por consequência, o escopo teórico da análise complexa também possui aplicações nas várias divisões da engenharia, como nas engenharias nuclear, aeroespacial, mecânica e elétrica.

Já que uma função diferenciável de variável complexa é igual à soma de sua série de Taylor isto é, também é uma função analítica a análise complexa tem interesse particular nas funções analíticas de variável complexa, denominadas funções holomorfas.

Funções complexas

A teoria das funções de variável complexa tem como um de seus principais objetivos a extensão do cálculo diferencial e integral para o domínio dos números complexos.[1] Seja A um conjunto de números complexos. Se denota qualquer um dos números do conjunto A, então é denominado uma variável complexa. Se existe uma correspondência entre os valores da variável complexa para com uma outra variável complexa para cada valor possível de (elementos do conjunto A), então é uma função da variável complexa z no conjunto A e isto é denotado como O conjunto A é usualmente algum domínio, chamado domínio de definição da função

Como todo número complexo pode ser escrito na forma em que indicam a parte real e a parte imaginária do número complexo z, respectivamente, temos que é possível decompor a função complexa na forma Como nas funções reais, existem diversas classes de funções que podem ser atribuídas às funções complexas, por exemplo:

em que z é uma variável complexa, é uma função polinomial em variável complexa.

Limites de funções complexas

Ver artigo principal: Limite de uma função

Seja f (z) uma função complexa definida nas vizinhanças do ponto z0, sendo possivelmente não definida no próprio ponto z0. De forma análoga ao caso real, define-se o limite L dessa função quando a variável z tende ao ponto z0 como sendo o valor da qual ela se aproxima (caso este exista) conforme z fica arbitrariamente próximo de z0. Em linguagem matemática formal, diz-se que

,

se, para cada número ε > 0 existe um outro número δ > 0 com a propriedade de que a desigualdade | f (z) - L | < ε é válida para todos os valores de z tais que | z - z0 | < δ e zz0.[2] Nessa definição, as barras || representam o módulo de um número complexo, definido como |z| = x2 + y2 para z = x + yi, em que x e y são as partes real e complexa de z, respectivamente. Uma notação alternativa também utilizada para denotar um limite é para .[2]

Algumas propriedades típicas dos limites de funções reais também podem ser aplicadas às funções complexas, por exemplo: 1) o limite da soma é igual a soma dos limites; 2) o limite do produto é igual ao produto dos limites; 3) o limite do quociente é igual ao quociente dos limites (dado que o denominador não seja 0); ...

As condições de continuidade para as funções complexas são as mesmas de uma função real.

Derivada de uma função complexa

Ver artigo principal: Derivada

Tomemos, à semelhança das funções reais, o limite denominado "derivada" da função em relação a no ponto Assim, como nas funções reais, uma função complexa tem de ser contínua em um ponto para que seja diferenciável neste ponto (mas a recíproca não é necessariamente verdadeira). As principais fórmulas de diferenciação empregadas nas funções reais tem sua versão análoga para as funções complexas.

Condições de Cauchy-Riemann

Suponha que a função f seja derivável em em que

e para a mudança correspondente em v(x,y). Então

e também:

Em particular, quando em que esses limites se tornam limites de funções de uma variável (\Delta x) de forma que:

ou seja, as derivadas parciais e com relação a x existem no ponto e

e

O procedimento análogo pode ser feito observando quando de forma que existem as derivadas parciais com relação a y e são elas:

e

no ponto

Dos dois procedimentos, chegamos às equações:

Que são as Condições de Cauchy-Riemann. Como chegamos à expressão no ponto Estabelece-se o Teorema:

Teorema. Se a derivada de uma função existe num ponto então as derivadas parciais de primeira ordem, com relação a e de cada componente e devem existir naquele ponto e satisfazer as condições de Cauchy-Riemann. Além disso, é dada em termos de suas derivadas parciais pela equação

Referências

  1. Ahlfors 1979, p. 21
  2. Ahlfors 1979, p. 22

Bibliografia

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.