Toro (topologia)

Toro ou toróide é um espaço topológico homeomorfo ao produto de dois círculos. Apresenta o formato aproximado de uma câmara de pneu. Em geometria, pode ser definido como o lugar geométrico tridimensional formado pela rotação de uma superfície circular plana de raio r, em torno de uma circunferência de raio R.

Toro
Notação
Característica de Euler 0
Grupo fundamental
Homologia
Animação Toróide

Formas de construir um toro

  • Identificando os lados opostos de um quadrado sem os torcer.
  • Identificando os lados opostos de um hexágono sem os torcer.

Geometria

Um toro pode ser imerso no como uma superfície algébrica do quarto grau.

Em coordenadas paramétricas, o toro é gerado por:

em que

u, v estão no intervalo [0, 2π],
R é a distância do centro do tubo ao centro do toro,
r é o raio do tubo.

Em coordenadas cartesianas, o toro com simetria de rotação no eixo z tem equação:

eliminando a raiz quadrada, chega-se a:

A área da superfície e o volume do interior são dados por:

As fórmulas da área e do volume são as mesmas de um cilindro, em que sua altura é o equivalente à circunferência média do toro e o raio da base equivalente ao raio da seção transversal do toro . Este cilindro é criado "cortando-se" o toro e estendendo-o pelo centro do tubo. As perdas em área e volume na parte interna são compensadas por ganhos na parte externa.

Propriedades topológicas

O toro é uma superfície topológica compacta, conexa e orientável, que pode ser representada por um polígono (no caso, quadrado) com uma orientação nas arestas. Esta orientação representa a identificação das arestas. Uma possível triangulação do toro é dada pela figura abaixo, na qual o toro é representado pelo quadrado com os lados identificados [1] .

Triangulação do Toro

Podemos também triangularizar o bitoro, que é uma soma conexa de dois toros, triangularizando a região poligonal que o representa, que é um polígono com uma orientação nas arestas. Esta orientação determina como as arestas devem ser coladas para formar a figura topológica.[1] Uma possível triangulação do bitoro é dada pela figura abaixo:

Bitoro
Triangulação do Bitoro

Ver também

Referências

  1. Hatcher, 2002

Bibliografia

  • Kozak, Ana Maria; Pompeya Pastorelli Sonia, Verdanega Pedro Emilio (2007). Nociones de Geometria Analitica y Algebra Lineal (em espanhol). [S.l.]: Mcgraw-Hill. 744 páginas. ISBN 9789701065969
  • Hatcher, Allen (2002). Algebraic Topology (em inglês). [S.l.]: Cambridge University Press. ISBN ISBN 0-521-79540-0 Verifique |isbn= (ajuda)
  • Nikulin, V.V; I.R.Shafarevich (1987). Geometries and Groups (em inglês). [S.l.]: Springer. ISBN 9783540152811
  • Munkres, J. (1966). Elementary Differential Topology, edição revisada. Col: Annals of Mathematics Studies 54. [S.l.]: Princeton University Press. ISBN 0-691-09093-9
  • "Tore (notion géométrique)" at Encyclopédie des Formes Mathématiques Remarquables

Ligações externas

Galeria

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.