Fecho algébrico
Dado um corpo F, dizemos que uma extensão E de F é um fecho algébrico de F quando E é uma extensão algébrica que é algebricamente fechada, isto é, contém todas as raizes de polinómios com coeficientes em F.
Em certo sentido (isomorfismo), cada corpo F tem apenas um fecho algébrico pelo que este é por vezes referido como o fecho algébrico de F.
Teoremas
- Unicidade: se dois corpos e são fechos algébricos de F, então eles são isomorfos.
- Existência: o axioma da escolha permite construir o fecho algébrico de qualquer corpo.
Exemplos
- O fecho algébrico do corpo dos números racionais é chamado de conjuntos dos números algébricos. Nem todo número algébrico é real (as soluções de x2 + 1 = 0, por exemplo), e nem todo número real é algébrico (estes números são chamados de números transcendentes reais; e e pi são exemplos).
- O fecho algébrico do corpo dos números reais é o corpo dos números complexos.
Ligações externas
- Algebraic Closure - MathWorld (em inglês)
Referências
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.