Interação spin-órbita

Na física quântica, a interação spin-órbita (também chamado efeito spin-órbita ou acoplamento spin-órbita) é qualquer interação de partículas de spin com seu movimento. O primeiro e mais conhecido exemplo disto é que a interação spin-órbita provoca mudanças nos níveis de energia atômica de elétrons devido a uma interação entre o momento de dipolo magnético do spin e o campo magnético interno do átomo gerado pela órbita do elétron em torno do núcleo. Isto é detectável como uma divisão de linhas espectrais. Um efeito similar, devido à relação entre o momento angular e da força nuclear forte, ocorre por prótons e nêutrons em movimento dentro do núcleo, levando a uma mudança nos seus níveis de energia no modelo de concha do núcleo. No campo da spintrônica, os efeitos spin-órbita de elétrons em semicondutores e outros materiais são explorados para aplicações tecnológicas.[1] A interação spin-órbita é uma das causas da anisotropia magnetocristalina.

Momentos angulares e momentos magnéticos (imagem semi-clássica)

Uma corrente numa espira tem associado a ela um momento magnético dado por:

.

Nessa expressão é a intensidade da corrente e é o vetor área cuja direção é perpendicular ao plano da espira e o sentido é consistente com a regra do parafuso de rosca direita:

e i = carga do electrão X número de vezes por segundo que o electrão passa num dado ponto = e.f onde f é a frequência de rotação do electrão.

Módulo do momento de dípolo magnético

Cuja direção é oposta a do momento angular orbital porque o electrão possui carga negativa.

Agora

Portanto

(Z)

Dado que o momento angular é quantizado, temos:

Na primeira órbita de Bohr, m = 1 e a equação (Z) torna-se

(Y)

onde é chamado magnetão de Bohr e o seu valor é dado por


Pode-se ver da Equação (Y) que é anti-paralelo ao momento angular orbital.

O rácio entre o momento magnético e o momento angular orbital é chamado o rácio giromagnético clássico,

(X)

O momento angular de spin também possui um momento magnético a ele associado.

O seu rácio giromagnético é aproximadamente duas vezes o valor clássico para o momento orbital, isto é,

(K)

Isso significa que o spin é duas vezes mais eficaz em produzir um momento magnético do que o momento angular.

Equações (X) e (K) são muitas vezes combinados, escrevendo

onde a grandeza g é chamada o fator de divisão espectroscópico. Para momentos angulares orbitais g = 1, para spin apenas g ≈ 2 (embora experimentalmente g = 2 004).

Para os Estados que são misturas de momento angular orbital e momento angular de spin, g não é inteiro .

Dado que

O momento magnético devido ao spin do electrão é:

Assim, a menor unidade de momento magnético para o electrão é o magnetão de Bohr, quer se combine momento angular orbital ou spin.

A interação spin-órbita (mecânica quântica)

Na inclusão introdutória do spin na função de onda de Schrodinger, supõe-se que as coordenadas do spin são independentes das coordenadas do espaço de configuração.[2]

Assim, a função de onda total é escrita como uma função de produto.

(P)

A suposição feita acima implica que não existe interação entre L e S, i.e

Neste caso, é uma auto-função de ambos e e portanto e são bons números quânticos; em outras palavras, as projeções de e são constantes do movimento.

Mas na verdade existe uma interação entre e chamada interação Spin-Órbita expressa em termos da grandeza .

Dado que não comuta quer com ou com , a equação (P) torna-se incorreta e e deixam de ser bons números quânticos. 

Nós imaginamos a interação spin-órbita como o momento magnético spin estacionária interagindo com o campo magnético produzido pelo núcleo orbitante.

No sistema de referência de repouso do electrão, há um campo eléctrico

Onde dirige‐se do núcleo em direção ao electrão. 

Assumindo que  é a velocidade do electrão no sistema de referência de repouso do núcleo, a corrente produzida pelo movimento nuclear é: 

No sistema de referência de repouso do electrão.

Portanto

O momento de spin do electrão realiza um movimento precessional neste campo com frequência de Larmor:

Com energia potencial

As equações acima são válidas no quadro de referência de repouso electrão.

A Transformação para o sistema de referência de repouso do núcleo introduz um fator de ½ - chamado o fator de Thomas. [Isto pode ser mostrado, calculando o tempo dilatado entre os dois sistemas de referência em repouso].[2]

Portanto, um observador no sistema de referência de repouso do núcleo poderia observar o electrão a realizar um movimento de precessão com uma velocidade angular de

(T)

e por uma energia adicional dada por

As duas Eqs acima podem ser colocadas em uma forma mais geral, restringindo o V ser qualquer potencial central com simetria esférica.

De forma que

e então

A equação (T) torna-se então

E a energia adicional

O produto escalar

Para spin = ½

A separação energética se torna então

Para o potencial de Coulomb a separação energética pode ser aproximada por:

Onde

é o comprimento de onda de Compton

ou

Um resultado útil no cálculo é citado sem prova. O valor médio de i.e.

para

De modo que a separação energética se torna

para

Esquemas de acoplamento do momento angular

Consideramos até agora somente o acoplamento do spin e momento orbital de um único electrão por meio da interação spin-órbita. Nós agora vamos considerar o caso de dois electrões nos quais há quatro momentos constituintes.

O modelo de acoplamento j - j

Este modelo assume que a interação de spin-órbita domina as interações electrostáticas entre as partículas.

Assim, nós escrevemos para cada partícula

O momento angular total é obtido combinando e  :

.

sendo assim temos

Ilustramos o acoplamento j-j aplicando-o a dois electrões p não equivalentes.

Para cada electrão

ou

Em um campo magnético fraco, cada Estado de um determinado j irá desdobrar-se em (2j+1) estados, correspondendo aos valores permitidos de mj.

Embora o acoplamento j-j seja amplamente utilizado para a descrição dos estados nucleares observados em espectroscopia nuclear, não é adequado para muitos sistemas atómicos por causa das interações electrostáticas e outras interações entre os dois electrões.

O esquema de acoplamento de Russell-Saunders

O modelo de acoplamento de Russell-Saunders tem sido mais bem sucedido no enquadramento dos espectros atómicos de todos, excepto dos átomos mais pesados. O modelo pressupõe que a interação electrostática, incluindo forças de intercâmbio,

entre dois electrões domina a interação de spin-órbita. Neste caso, os momentos orbitais e os spins dos dois electrões combinam separadamente para formar

O momento angular total é dado, por

O valor absoluto de , corresponde a:

onde os valores possíveis de L são:

para

O número quântico l determina as características do nível:

l=1, corresponde ao nível P, mas não significa necessariamente que a configuração de um dos electrões esteja individualmente num estado p.

As transições ópticas seguem as seguintes regras de seleção:

para um só electrão

para o sistema total.

significa que os estados quânticos dos dois electrões variam simultaneamente, e em direções opostas, o que só é possível quando o acoplamento é forte, como é o caso dos átomos pesados.

Para dois electrões-p não equivalente temos:

Para cada l e s, os valores de j são

para cada valor de j existem (2j+1) valores de . As combinações são dadas na tabela.

Observar-se-á que, apesar do número de Estados é uma vez mais 36 em um campo magnético fraco, as suas energias não são as mesmas que aquelas no esquema de acoplamento j-j

Referências

  1. Caetano, R. A. (24 de março de 2016). «Spin-Current and Spin-Splitting in Helicoidal Molecules Due to Spin-Orbit Coupling». Scientific Reports (em inglês). 6. PMID 27009836. doi:10.1038/srep23452
  2. KIWANGA, Christopher Amelye (2013). Christopher Amelye. KIWANGA, ed. Física Nuclear. Introdução à Física Nuclear 1 ed. Reino Unido: [s.n.] 133 páginas. Consultado em 22 de agosto de 2013. Arquivado do original em 10 de janeiro de 2014
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.