Jeff Cheeger

Honrarias e premiações

Publicações selecionadas

  • Cheeger, Jeff; Kleiner, Bruce On the differentiability of Lipschitz maps from metric measure spaces to Banach spaces. Inspired by S. S. Chern, 129—152, Nankai Tracts Math., 11, World Sci. Publ., Hackensack, NJ, 2006
  • Differentiability of Lipschitz functions on metric measure spaces. Geom. Funct. Anal. 9 (1999), no. 3, 428—517.
  • Lower bounds on Ricci curvature and the almost rigidity of warped products, with T. H. Colding. Annals of Math. 144. 1996. 189-237.
  • On the cone structure at infinity of Ricci flat manifolds with Euclidean volume growth and quadratic curvature decay, with G. Tian. Invent Math, 118. 1994. 493-571.
  • Collapsing Riemannian manifolds while keeping their curvature bounded, II, with M. Gromov. J. Differential Geometry. 31, 4. 1990. 269-298. Collapsing manifold
  • Eta-invariants and their adiabatic limits, with J. M. Bismut. J. American Mathematical Soiety, 2, 1. 1989. 33-70.
  • Cheeger, Jeff; Gromov, Mikhail; Taylor, Michael Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds. J. Differential Geom. 17 (1982), no. 1, 15—53.
  • On the Hodge theory of Riemannian pseudomanifolds. Amer. Soc. Proc. Sym. Pure Math, 36. 1980. 91-146. L² cohomology
  • Cheeger, Jeff (1977), «Analytic Torsion and Reidemeister Torsion», PNAS, 74 (7): 2651–2654, MR 0451312, PMC 431228Acessível livremente, PMID 16592411, doi:10.1073/pnas.74.7.2651
  • Cheeger, Jeff; Gromoll, Detlef The splitting theorem for manifolds of nonnegative Ricci curvature. J. Differential Geometry 6 (1971/72), 119—128. Splitting theorem
  • A lower bound for the smallest eigenvalue of the Laplacian. Problems in analysis (Papers dedicated to Salomon Bochner, 1969), pp. 195–199. Princeton Univ. Press, Princeton, N. J., 1970. Cheeger constant
  • Cheeger, Jeff; Gromoll, Detlef The structure of complete manifolds of nonnegative curvature. Bull. Amer. Math. Soc. 74 1968 1147—1150. Soul theorem
  • Cheeger, Jeff Finiteness theorems for Riemannian manifolds. Amer. J. Math. 92 1970 61—74
  • Cheeger, Jeff; Ebin, David G.: Comparison theorems in Riemannian geometry. Revised reprint of the 1975 original. AMS Chelsea Publishing, Providence, RI, 2008.[2]

Referências

  1. «Cópia arquivada». Consultado em 29 de setembro de 2011. Arquivado do original em 11 de março de 2010
  2. mathscinet

Ligações externas

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.