Ação de grupo

Definição

Na matemática, uma ação de um grupo G num conjunto X é uma operação α : G × XX compatível com as operações do grupo G, nos seguintes aspectos:

  • sendo e a identidade de G, vale α(e, x) = x para cada xX;
  • vale α(gh, x) = α(g, α(h, x)) para quaisquer g, hG e xX.

O conceito de ação de grupo assemelha-se ao de espaço vetorial, ainda mais quando se usa a abreviação gx para α(g, x).[1][2].

As mais básicas ações de grupos podem ser tratadas geometricamente, como simetrias. Por exemplo, o n-ésimo grupo diedral age no conjunto de vértices, mudando-os de posições por meios de reflexões e rotações; neste caso, a ação é fiel. O mesmo grupo diedral também tem outra ação dada por α(g, x) = x, isto é, sem mover os vértices, e neste caso a ação não é fiel.

As muitas propriedades de ações de grupos aplicam-se em áreas como a teoria dos corpos, teoria dos grafos e até a física quântica.

Tipos de ações

Uma ação de grupo α : G × XX pode ser equivalentemente tratada como um homomorfismo σ : G → Aut(X), levando elementos de G a bijeções, dado por σ(g)(x) = α(g, x), de modo que se possam aproveitar resultados sobre homomorfismos de grupos no estudo de suas ações.[1]

  • A ação α é dita ser fiel quando σ é função injetiva, isto é, quando o único elemento gG tal que ∀ (xX), α(g, x) = x é a identidade.
  • A ação α é dita ser transitiva quando qualquer elemento de X pode ser levado a qualquer outro, isto é, quando, para quaisquer x, yX, existe g tal que α(g, x) = y.
  • A ação α é dita ser livre quando, se α(g, x) = x para algum xX, deve ser que g é a identidade. (Quando X é não vazio, isto é uma condição mais forte do que ser fiel.)[1]

Exemplos

  • Todo grupo age sobre si mesmo, por α(g, h) = gh, e ação é fiel, transitive e livre. (Esta afirmação básica, de que todo grupo admite ação fiel, é conhecida por teorema de Cayley.)
  • Todo grupo age trivialmente em qualquer conjunto, por α(g, x) = x, e ação é (quando X é não vazio), não fiel nem livre, e quando X tem pelo menos dois elementos, também não é transitiva.
  • A operação (g, h) ↦ g−1h não é uma ação de grupo (à esquerda), mas é uma ação de grupo à direita: uma operação β : X × GX (neste caso β(h, g) := g−1h) satisfazendo propriedades análogas.
  • Todo grupo G age em qualquer subgrupo normal seu H por conjugação: α(g, h) = ghg−1.
  • Sendo subgrupo HG, não necessariamente normal, há ação canônica de G no conjunto de classes laterais G/H, dada por: α(g, xH) = (gx) ⋅ H.[1][2]

Órbitas e estabilizadores

Seja ação α : G × XX. A órbita de um elemento xX é o subconjunto Ox := {gx | gG}. O estabilizador de xX é o subgrupo Gx := {gG | gx = x}.[2]

O teorema da órbita e do estabilizador diz que há isomorfismo canônico OxG/Gx entre ações. Em particular, no caso finito, pelo teorema de Lagrange, tem-se a fórmula |Ox| ⋅ |Gx| = |G|, onde as barras verticais denotam cardinalidade.

Eis uma aplicação desse teorema básico:[3]

  • Dado p primo, seja G um p-grupo não trivial, isto é, um grupo com precisamente pn elementos, onde n é um inteiro positivo. Prova-se que o seu centro Z(G), o conjunto dos elementos de G comutando-se com qualquer outro elemento, é não trivial. Para tal, considera-se a ação de conjugação de G em G. O conjunto G pode ser particionado em suas órbitas; as órbitas triviais (de um só elemento cada) constituem-se precisamente dos elementos do centro; sejam n1, …, nk > 1 os tamanhos das outras órbitas, não triviais. Então, |G| = |Z(G)| + n1 + … + nk. Cada ni é divisor de |G|, que é uma potência do primo p, logo também é potência do mesmo primo, e sendo diferente de um, há de ser múltiplo de p. Desse como, como |G| é múltiplo de p, a parcela restante |Z(G)| também é múltiplo de p; como a identidade é elemento central, há pelo menos outros p − 1 elementos centrais.

Outras aplicações desse teorema ocorrem nas provas dos teoremas de Sylow.

Variantes

Há o conceito similar de ação de semigrupo, cuja teoria, porém, se complica pela ausência da operação de inversão.

Representação de grupo é um conceito mais estrito, usado quando se deseja escrever uma ação de grupo em termos de multiplicação de matrizes.

O conjunto X pode ter mais estrutura, e pode-se exigir que a ação de grupo seja compatível com essa estrutura; isso leva, por exemplo, ao estudo de ação de grupo contínua.

Todas essas variantes são casos particulares do conceito de functor.

Referências

  1. (Aluffi 2009, §II.9)
  2. (Judson 2020, §14.1)
  3. (Judson 2020, §14.2)

Bibliografia

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.