Hidrostática

A hidrostática é a parte da física que estuda os fluidos em repouso.[1] Apesar de a palavra "hidrostática" significar "estática da água", este termo é utilizado para designar a estática dos fluidos em geral.[1] Ao contrário dos sólidos, um fluido em equilíbrio não pode estar sob a ação de forças cisalhantes ou tangenciais, por menores que elas possam ser. Por decorrência, todas as forças que agem sobre um fluido em repouso fazem-se atuando perpendicularmente a sua superfície livre.[2]

Característica dos fluidos

Um fluido é uma substância (ou mistura de substâncias) que escoa, porque não resiste as tensões de cisalhamento, isto é, que flui, com maior ou menor facilidade.[1] Isto verifica-se porque as suas partículas, não ocupam posições fixas, deslocando-se com pequeno atrito, como acontece nos líquidos, e de outro modo, porque as partículas estão muito afastadas uma das outras, deslocando-se rápida e aleatoriamente em todo o espaço disponível como nos gases.[1]

Considera-se fluidos os líquidos e gases[1] e caracterizam-se por:

  • Compressibilidade: líquidos assumem-se incompressíveis na maioria das situações e os gases são muito compressíveis;
  • Resistência ao corte: os líquidos e gases deformam-se continuamente para minimizar forças de corte aplicadas;
  • Forma e volume: líquidos e gases tomam as formas do seu local, tendo os líquidos volume relativo ao do seu local e os gases ocupando o volume do seu local;
  • Resistência ao movimento: devido a viscosidade os líquidos sofrem mudanças na velocidade, já os gases tem viscosidade muito baixa;
  • Pressão: a pressão em um ponto do fluido é a mesma em todas as direções, a exercida em uma superfície solida é sempre normal aquela superfície.

Pressão exercida por um fluido

Ver artigo principal: Pressão

A grandeza pressão (P) é definida como a força (F) aplicada perpendicularmente a uma superfície por unidade de área (A) dessa superfície.[3] Se a densidade da força for a mesma para todos os pontos da superfície, então a pressão é denominada uniforme, e assim se pode escrever:

A unidade de pressão no Sistema Internacional de Unidades (SI) é o Pascal (Pa), definido como a razão entre Newton (N) e metro quadrado ().[3]

Entretanto, a força aplicada a uma dada superfície pode variar de um dado ponto para outro. Neste caso, a pressão será a derivada da força com relação à área perpendicular em que ela é aplicada:

Escalas de pressão. Pressão absoluta e Pressão relativa

Experiência de Torricelli: na parte superior do tubo há quase-vácuo.
Ver artigo principal: Pressão atmosférica

A grandeza escalar pressão pode ser expressa em relação a qualquer referencial, sendo que, no caso dos fluidos, normalmente são utilizados dois referenciais, a saber:

• Vácuo absoluto

•Pressão atmosférica local

Em um determinado espaço físico, sempre que a pressão absoluta for menor do que a pressão atmosférica local, que também é denominada de pressão barométrica, ali existe o que se denomina de vácuo. Assim o vácuo absoluto constituiria uma situação limite na qual não existiria nenhuma molécula de ar atmosférico em um determinado espaço físico. Destaca-se , entretanto, que o maior vácuo obtido em laboratório até nosso presente corresponde a uma pressão de .[2]

Levando-se em conta os dois referenciais descritos acima, se têm duas situações distintas para a expressão numérica da pressão:

• Quando a pressão é expressa como sendo a diferença entre seu valor medido e o vácuo absoluto, ela é denominada de pressão absoluta.

• Quando a pressão é expressada como sendo a diferença entre eu valor medido e a pressão atmosférica local, ela é chamada de pressão relativa. A pressão relativa também é denominada de pressão manométrica ou de pressão efetiva.

Matematicamente, as pressões relativa e absoluta estão relacionadas pela expressão a seguir:

[2]

Princípio de Pascal

Ver artigo principal: Princípio de Pascal
Prensa hidráulica: O aumento da força hidráulica

O Princípio de Pascal enuncia-se da seguinte forma: "A diferença de pressão entre dois pontos de um líquido homogêneo em equilíbrio é constante, dependendo apenas do desnível entre esses pontos. Logo, se produzirmos uma variação de pressão num ponto de um líquido em equilíbrio, essa variação se transmite a todo o líquido", ou seja, todos os pontos do líquido sofrem a mesma variação de pressão.

Uma aplicação prática é a prensa hidráulica. Para um êmbolo de 10 m² e outro de 1 m², uma força equivalente a 70 N será suficiente para levantar um veículo que pese 700 N, no outro êmbolo. Se um recipiente cheio de água, fechado, tem duas aberturas, uma cem vezes maior que a outra: colocando um pistão bem justo em cada uma, um homem empurrando o pistão pequeno igualará a força de cem homens empurrando o pistão cem vezes maior.[4] E qualquer que seja a proporção das aberturas, estarão em equilíbrio.

Assim, se F1 e F2 são as magnitudes das forças sobre os pistões de áreas A1 e A2, respectivamente, temos:

Como a área do pistão grande é muito maior do que a do pistão pequeno, a força sobre o pistão grande F2 é muito maior do que F1.

Pressão hidrostática e lei de Stevin[5]

Ver artigo principal: Teorema de Stevin

A lei de Stevin enuncia-se da seguinte forma: "A diferença de pressões entre dois pontos da massa de um líquido em equilíbrio é igual à diferença de profundidade multiplicada pelo peso específico do líquido".[2]

Todo o mergulhador sabe que a pressão é maior quanto maior for sua profundidade (a coluna de água acima dele é cada vez maior); o seu medidor de profundidade, na verdade, é um sensor de pressão. Da mesma forma, todo alpinista sabe que a pressão é menor quanto maior for a sua altura (a coluna de ar acima dele é cada vez menor). Esses dois exemplos irão ilustrar a definição de pressão hidrostática.

Caixa mergulhada e em equilíbrio estático

Considere inicialmente uma caixa mergulhada, em equilíbrio estático, num tanque de água (ou qualquer outro fluido, como o ar); como ela está em equilíbrio, sabemos que não há força resultante, ou seja:

Onde:

  • é a força que age sobre a parte inferior da caixa, devido à coluna de água abaixo dela;
  • é a força que age sobre a parte superior da caixa, devido à coluna de água acima dela;
  • é o peso da caixa;
  • são, respectivamente, o teto e a base da caixa.

Sabendo que a soma de forças atuando na caixa mergulhada deve ser igual a zero(pois a mesma está em equilíbrio), temos:

, cujo representa o volume da caixa

, em que é a área da base e a altura

A partir da relação de que (a força F é igual à pressão P exercida sobre a área A), segue da figura que:

, com isso chegamos na seguinte equação:

.

Com a equação acima, podemos determinar a pressão em um certo líquido (em função da profundidade) e também na atmosfera (em função da altitude). Se considerarmos , , e , substituímos e obtemos a fórmula usual da pressão na profundidade ou altura :

.

A equação acima representa a demonstração do teorema de Stevin.

Onde, em termos do SI:

  • é a pressão total na profundidade h (em Pascal);
  • é pressão acima do líquido (em Pascal);
  • é a massa específica (ou densidade) do fluido em questão (em kg/m³);
  • é a aceleração da gravidade (em m/s²);
  • é a profundidade ou altura (em metros).

Para compreender melhor, podemos usar um exemplo comum: a pressão total é a soma das pressões (pode ser a pressão atmosférica acima da superfície do líquido) e (pressão na profundidade de um fluido.

Um outro exemplo pode ser ilustrado de acordo com a figura abaixo, onde a pressão hidrostática se dá pela diferença das pressões aplicadas sobre o sifão:

sendo que .
As setas representam apenas que existem pressões atuando naquelas seções do sifão, tendo em vista que pressão não é um grandeza vetorial.

Assim, para calcular apenas a pressão hidrostática usamos a fórmula abaixo:


Tópico 3. Vasos Comunicantes

Pode-se perceber ainda, pelo teorema, que:

  1. Para obter a diferença de pressão entre dois pontos não importa a distância entre eles, mas sim a diferença de altura;
  2. Dois pontos num mesmo nível em relação ao mesmo plano horizontal possuem a mesma pressão;
  3. O formato de recipiente não é importante para o cálculo da pressão em qualquer ponto no fluido. Em um recipiente de formato qualquer, dois pontos em um mesmo nível tem a mesma pressão, desde que o fluido seja o mesmo nesses dois pontos;
  4. Se a pressão na superfície livre de um líquido contido em um recipiente for igual a zero, a pressão num ponto à profundidade h dentro do líquido será dada por: ;
  5. O peso específico dos gases é relativamente baixo, então se a diferença de altura entre dois pontos for pequena, não há necessidade de considerar a diferença de pressão entre eles.


Paradoxo Hidrostático

Paradoxo Hidrostático No fundo de diferentes recipientes, com um mesmo líquido e preenchidos com alturas equivalentes, haverá o mesmo valor de pressão hidrostática.

Princípio de Arquimedes

Ver artigo principal: Princípio de Arquimedes

O princípio de Arquimedes afirma que:[6]

Esta força resultante de baixo para cima sobre o corpo sólido denomina-se força de empuxo que, de acordo com o princípio de Arquimedes, pode ser definida por:

onde é a massa do fluido deslocado pelo corpo e a aceleração gravitacional.

Quando um balão flutua em equilíbrio no ar ou quando um submarino está em equilíbrio debaixo d'água, seu peso é igual ao peso da água deslocado por ele, ou seja, a força de empuxo é igual a força gravitacional exercida sobre o corpo. Quando essas forças são iguais, pode-se dizer que o corpo está flutuando no fluido.

Peso aparente[5]

Se colocarmos uma pedra sobre uma balança calibrada, a leitura da balança seria do peso da pedra. Agora, imagine se colocarmos a balança debaixo d'água para medir o peso da mesma pedra. A leitura da balança seria menor devido a força de empuxo sobre a pedra. Esta leitura passa a ser, portanto, o peso aparente.

O peso aparente está relacionado ao peso real de um corpo e à força de empuxo sobre ele, descrito na forma:

Determinação do centro de pressão

A posição do centro de pressão pode ser determinada aplicando-se o teorema dos momentos. A equação resultante é:

onde é a distância entre a linha de interseção com a superfície livre do líquido e o centro de pressão da área, o momento de inércia em relação ao eixo-intersecção e, a distância entre a linha de interseção com a superfície livre e o centro de gravidade da área, sendo que o centro de pressão se localiza um pouco abaixo do centro de gravidade.


Ver também

Referências

  1. Maciel, Noemia (2012). Física, 12 Classe. Luanda: Porto Editora. p. 246. ISBN 978-972-0-08020-2
  2. Peres, José (2006). Hidráulica Agrícola. Araras: EdUFSCAR. p. 49
  3. Santos, Marco Aurélio da Silva. «Hidrostática». Brasil Escola. Consultado em 6 de novembro de 2018
  4. NUSSENZVEIG, H. Moysés. Curso de Física Básica. [S.l.]: Blucher
  5. Halliday,D.; Resnick, R.; Walker,J.; Fundamentos de Física 2, Livros Técnicos e Científicos Editora, Rio de Janeiro, 2012
  6. Toffoli, Leopoldo. «Princípio de Arquimedes». Infoescola. Consultado em 10 de novembro de 2018

Ligações externas

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.