Lógica intuicionista

Lógica intuicionista, ou lógica construtivista, é o sistema de lógica simbólica desenvolvido por Arend Heyting para prover uma base formal para o intuicionismo de Brouwer. O sistema preserva, também, a justificação, e não apenas a verdade, no processo que leva de hipóteses a proposições derivadas - se as hipóteses são verdadeiras e justificáveis então a conclusão também será verdadeira e justificável. De um ponto de vista prático, há, também, uma forte motivação para usar a lógica intuicionista, já que ela possui a propriedade existencial, tornando-a adequada para outras formas de construtivismo matemático.

Sintaxe

A sintaxe das fórmulas da lógica intuicionista é similar à da lógica proposicional ou da lógica de primeira ordem. No entanto, os conectivos intuicionistas não são interdefiníveis da mesma maneira que na lógica clássica - sendo assim, a escolha de conectivos básicos faz diferença. Na lógica proposicional intuicionista é usual utilizar , , , como conectivos básicos, tratando como a abreviatura . Na lógica intuicionista de primeira ordem, ambos os quantificadores , são necessários.

Muitas tautologias da lógica clássica não podem ser demonstradas pela lógica intuicionista. Alguns dos exemplos são a lei do terceiro excluído , também a lei de Peirce e, até mesmo, a eliminação da dupla negação. Na lógica clássica ambos e são teoremas, mas na lógica intuicionista apenas a primeira é um teorema: a dupla negação pode ser introduzida, mas não pode ser eliminada.

A observação de que muitas tautologias válidas classicamente não são teoremas da lógica intuicionista leva à ideia de enfraquecimento na teoria de demonstrações da lógica clássica.

Cálculo à la Hilbert

A lógica intuicionista pode ser definida utilizando o seguinte sistema dedutivo à la Hilbert.

Na lógica proposicional a regra de inferência é modus ponens

  • MP: de e deriva-se

e os axiomas são

  • ENTÃO-1:
  • ENTÃO-2:
  • E-1:
  • E-2:
  • E-3:
  • OU-1:
  • OU-2:
  • OU-3:
  • ABSURDO:

Para fazer disto um sistema de primeira ordem, adicionamos as regras de generalização

  • GEN-∀: de deriva-se , se x não for variável livre em
  • GEN-∃: de deriva-se , se x não for variável livre em

e os seguintes axiomas

  • PRED-1: , se t é um termo livre pra x em , isto é, se as variáveis do termo t não se tornam quantificadas ao substituirmos x por t.
  • PRED-2: , com as mesmas restrições acima
Negação

Para incluir o conectivo para negação, no lugar de utilizá-la como abreviatura para , é suficiente adicionar os axiomas

  • NÃO-1:
  • NÃO-2:

Há um grande número de alternativas para omitir o conectivo (absurdo). Por exemplo, pode-se substituir os axiomas ABSURDO, NÃO-1, e NÃO-2 por

  • NÃO-1:
  • NÃO-2:

alternativas para o NÃO-1 são ou .

Equivalência

O conectivo (bi-implicação) para equivalência pode ser tratado como abreviatura, com significando . Como alternativa, pode-se adicionar os axiomas

  • SSE-1:
  • SSE-2:
  • SSE-3:

SSE-1 e SSE-2 podem ser combinados, utilizando a conjunção, em um só axioma .


Dedução Natural

Há um sistema de Dedução Natural que pode ser utilizado para tratar da lógica intuicionista, com a adição de uma regra, conhecida como regra do absurdo clássico, podemos utilizá-lo para a lógica clássica. Esse sistema é melhor explicado no artigo em Sistema intuitivo.


Cálculo de seqüentes

Gentzen descobriu que uma pequena restrição no seu sistema LK (seu sistema de cálculo de seqüentes para a lógica clássica) resulta em um sistema correto e completo em relação à lógica intuicionista, e denominou esse sistema LJ.


Relação com a lógica clássica

A lógica clássica pode ser obtida a partir da lógica intuicionista com a adição de um dos seguintes axiomas

  • (Lei do terceiro excluído)
  • (Outra formulação para a lei do terceiro excluído)
  • (Eliminação da dupla negação)
  • (Lei de Peirce)

Outro relacionamento é dado pela tradução negativa de Gödel-Gentzen, que apresenta uma forma de traduzir sentenças da lógica clássica de primeira ordem para a lógica intuicionista: uma fórmula em primeira ordem pode ser demonstrada se e somente se sua tradução Gödel-Gentzen puder ser demonstrada intuicionisticamente. Por isso, a lógica intuicionista também pode ser vista como uma forma de estender a lógica clássica com uma semântica construtivista.

Tomemos g(A) como tradução negativa de Gödel-Gentzen da fórmula clássica A, assim as fórmulas clássicas são traduzidas da seguinte forma:

  • traduz-se como , se é um átomo ou predicado 0-ário.
  • traduz-se como .
  • traduz-se como .
  • traduz-se como .
  • traduz-se como .
  • traduz-se como .
  • traduz-se como .

Não-interdefinibilidade de operadores

Na lógica clássica proposicional, é possível tomar um dos conectivos: conjunção, disjunção, ou implicação como primitivo, e definir os outros dois a partir dele, em conjunto com a negação. De forma parecida, na lógica clássica de primeira ordem, pode-se definir um quantificador a partir do outro em conjunto com a negação.

Essas são consequências fundamentais da lei do terceiro excluído, que faz com que todos os conectivos sejam apenas funções booleanas. Essa lei não é preservada na lógica intuicionista, apenas a lei da não-contradição, e como resultado nenhum dos conectivos básicos podem ser dispensados e todos os axiomas são necessários, pois não há como definir um conectivo básico a partir de outro. Com isso, na maioria dos casos, apenas um dos lados das equivalências clássicas se mantêm. Os teoremas que valem intuicionisticamente são os seguintes:

Conjunção disjunção:

Conjunçao implicação

Disjunção implicação

Quantificação universal existencial:

Podemos ver, então, que uma afirmação do tipo "a ou b" é mais forte que "se a não for o caso, então b o é", enquanto elas são equivalentes na lógica clássica, e que, por outro lado, "não é o caso que a ou b" é equivalente a "nem a, nem b", assim como na lógica clássica.

Semântica

A semântica da lógica intuicionista é mais complicada que a da lógica clássica, pois ela não trabalha apenas com função sobre os valores verdadeiro e falso. Uma teoria de modelos para a lógica intuicionista pode ser dada através de álgebras de Heyting ou, equivalentemente, pela semântica de Kripke.

Semântica da álgebra de Heyting

Na lógica clássica, a fórmula deve possuir um valor de verdade, usualmente os valores são membros da álgebra booleana. Assim, nós temos o teorema que diz que a fórmula é uma tautologia na lógica clássica se para qualquer valoração de seus átomos, o valor final da fórmula for 1 (verdadeiro).

Na lógica intuicionista, não existem apenas dois valores possíveis para um átomo, e em geral o mesmo ocorre com fórmulas mais complexas. Uma das formas de dar conta disso é utilizando uma álgebra de Heyting, da qual a álgebra booleana é um caso especial. Para a lógica intuicionista, pode-se usar uma álgebra de Heyting em que os elementos são os subconjuntos abertos da linha real para demonstrar fórmulas válidas.

Nesta álgebra, a conjunção é tratada como uma operação de interseção, a disjunção como uma operação de união e a implicação como o interior do conjunto resultante de uma operação do tipo: complemento do primeiro união com segundo é tratado como o interior de ). O absurdo é tratado como conjunto vazio, sendo assim, a negação de um elemento é o interior do complemento do conjunto de valoração deste elemento.

Tome como exemplo: ; essa fórmula é válida, pois, independentemente do valor atribuído a e a teremos a linha inteira dos reais ( representa uma valoração):

- pois, graças a um teorema topológico, sabemos que o interior do complemento é um subconjunto do complemento.

- pois, nessa situação, o complemento de vazio é todo o conjunto dos reais.

- pois um conjunto unido com algum subconjunto dele tem como resultado ele mesmo.

Então, - pois o interior do conjunto dos reais tem como resultado o próprio conjunto dos reais.

Também é fácil ver que a lei do terceiro excluído () é inválida, pois atribuindo a o valor , temos que o valor de é e a união de ambos é .

Semântica de Kripke

Feita com base em seu trabalho na semântica de lógicas modais, Saul Kripke criou outra semântica para a lógica intuicionista, conhecida como semântica de Kripke ou semântica relacional.[1] Ela se baseia na hipótese que também vem do intuicionismo de que o conhecimento não é destruído, apenas construído.

A aplicação dessa semântica na lógica intuicionista parece bastante com a aplicação da semântica de mundos na lógica modal.

Uma estrutura de Kripke K para a linguagem L consiste de um conjunto parcialmente ordenado de nós e uma função domínio D que recebe um nó e retorna o conjunto de átomos válidos naquele nó, de forma que se um for posterior a então . Considere também uma função f, associada a cada nó , que recebe predicados 0-ários e retorna o valor de verdade do predicado, naquele nó - , no caso de o predicado ser verdadeiro naquele nó, e , no caso de o predicado não ser verdadeiro naquele nó - e uma função T no formato , associada, também, a cada nó , que recebe predicados (n+1)-ários Q, com , tal que ela retorna o conjunto de (n+1)-tuplas de elementos do domínio se essa tupla pertencer a relação Q. A função f se propaga de forma que se for posterior a então se , e a função T se propaga de forma que se for posterior a então .

As seguintes regras são definidas:

  • , para o caso de ser um predicado 0-ário, sse .
  • , para o caso de Q ser um predicado (n+1)-ário, sse .
  • , se e .
  • , se ou .
  • , para todo posterior a , se então .
  • se, para nenhum posterior a , .
  • se, para todo posterior a e todo , é o caso.
  • se existe algum tal que e .


Também vale ressaltar que:

  • Não é possível para qualquer sentença e qualquer nó .
  • Se um nó é posterior a um nó então se então para qualquer sentença .
  • Uma sentença só pode ser uma tautologia se, para todo em todas as estruturas Kripke possíveis, .


Exemplo

Veremos se é uma tautologia na lógica intuicionista.

Por definição, temos que em todos as estruturas K (1) para todo . Pela definição de e (1), temos que (2) se então (3) , para todo posterior a . De (2), por definição, temos que para qualquer . Logo, é uma tautologia na lógica intuicionista.


Propriedade existencial

Na lógica intuicionista, uma fórmula do tipo só é demonstrável se for possível mostrar esse x. Outra coisa que deve-se notar é que, nessa lógica, fórmulas como são tautologias apenas se e forem tautologias, assim como apenas é tautologia se ou for tautologia. Na lógica clássica é fácil de perceber que isso não se aplica utilizando a lei do terceiro excluído: , pois não é verdade, em geral, que seja uma tautologia, ou que o seja. Essa propriedade é chamada de propriedade existencial/disjuntiva.

Relação com outras lógicas

A lógica intuicionista é um tipo de lógica paracompleta, dual às lógicas paraconsistentes.


Ver também

Notas

  1. Intuitionistic Logic. Written by Joan Moschovakis. Published in Stanford Encyclopedia of Philosophy.

Ligações externas

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.